1
0
Fork 0
tinycc/arm-asm.c

1793 lines
57 KiB
C
Raw Normal View History

/*
2020-12-26 17:24:39 +02:00
* ARM specific functions for TCC assembler
*
* Copyright (c) 2001, 2002 Fabrice Bellard
* Copyright (c) 2020 Danny Milosavljevic
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
2020-12-26 17:24:39 +02:00
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#ifdef TARGET_DEFS_ONLY
#define CONFIG_TCC_ASM
#define NB_ASM_REGS 16
ST_FUNC void g(int c);
ST_FUNC void gen_le16(int c);
ST_FUNC void gen_le32(int c);
/*************************************************************/
#else
/*************************************************************/
2020-12-26 17:39:31 +02:00
#define USING_GLOBALS
#include "tcc.h"
enum {
OPT_REG32,
OPT_REGSET32,
OPT_IM8,
OPT_IM8N,
OPT_IM32,
};
#define OP_REG32 (1 << OPT_REG32)
#define OP_REG (OP_REG32)
#define OP_IM32 (1 << OPT_IM32)
#define OP_IM8 (1 << OPT_IM8)
#define OP_IM8N (1 << OPT_IM8N)
#define OP_REGSET32 (1 << OPT_REGSET32)
typedef struct Operand {
uint32_t type;
union {
uint8_t reg;
uint16_t regset;
ExprValue e;
};
} Operand;
/* Parse a text containing operand and store the result in OP */
static void parse_operand(TCCState *s1, Operand *op)
{
ExprValue e;
int8_t reg;
uint16_t regset = 0;
op->type = 0;
if (tok == '{') { // regset literal
next(); // skip '{'
while (tok != '}' && tok != TOK_EOF) {
reg = asm_parse_regvar(tok);
if (reg == -1) {
expect("register");
return;
} else
next(); // skip register name
if ((1 << reg) < regset)
tcc_warning("registers will be processed in ascending order by hardware--but are not specified in ascending order here");
regset |= 1 << reg;
if (tok != ',')
break;
next(); // skip ','
}
if (tok != '}')
expect("'}'");
next(); // skip '}'
if (regset == 0) {
// ARM instructions don't support empty regset.
tcc_error("empty register list is not supported");
} else {
op->type = OP_REGSET32;
op->regset = regset;
}
} else if (tok == '#' || tok == '$') {
/* constant value */
next(); // skip '#' or '$'
asm_expr(s1, &e);
op->type = OP_IM32;
op->e = e;
if (!op->e.sym) {
if ((int) op->e.v < 0 && (int) op->e.v >= -255)
op->type = OP_IM8N;
else if (op->e.v == (uint8_t)op->e.v)
op->type = OP_IM8;
} else
expect("constant");
} else if ((reg = asm_parse_regvar(tok)) != -1) {
next(); // skip register name
op->type = OP_REG32;
op->reg = (uint8_t) reg;
} else
expect("operand");
}
/* XXX: make it faster ? */
ST_FUNC void g(int c)
{
int ind1;
if (nocode_wanted)
return;
ind1 = ind + 1;
if (ind1 > cur_text_section->data_allocated)
section_realloc(cur_text_section, ind1);
cur_text_section->data[ind] = c;
ind = ind1;
}
ST_FUNC void gen_le16 (int i)
{
g(i);
g(i>>8);
}
ST_FUNC void gen_le32 (int i)
{
2020-12-26 18:25:07 +02:00
int ind1;
if (nocode_wanted)
return;
ind1 = ind + 4;
if (ind1 > cur_text_section->data_allocated)
section_realloc(cur_text_section, ind1);
cur_text_section->data[ind++] = i & 0xFF;
cur_text_section->data[ind++] = (i >> 8) & 0xFF;
cur_text_section->data[ind++] = (i >> 16) & 0xFF;
cur_text_section->data[ind++] = (i >> 24) & 0xFF;
}
ST_FUNC void gen_expr32(ExprValue *pe)
{
gen_le32(pe->v);
}
2020-12-26 17:39:31 +02:00
static uint32_t condition_code_of_token(int token) {
if (token < TOK_ASM_nopeq) {
expect("instruction");
return 0;
} else
return (token - TOK_ASM_nopeq) & 15;
}
static void asm_emit_opcode(int token, uint32_t opcode) {
gen_le32((condition_code_of_token(token) << 28) | opcode);
}
static void asm_nullary_opcode(int token)
{
2020-12-26 17:39:31 +02:00
switch (ARM_INSTRUCTION_GROUP(token)) {
case TOK_ASM_nopeq:
asm_emit_opcode(token, 0xd << 21); // mov r0, r0
break;
2020-12-26 17:46:08 +02:00
case TOK_ASM_wfeeq:
asm_emit_opcode(token, 0x320f002);
case TOK_ASM_wfieq:
asm_emit_opcode(token, 0x320f003);
break;
2020-12-26 17:39:31 +02:00
default:
expect("nullary instruction");
}
}
2020-12-26 17:48:47 +02:00
static void asm_unary_opcode(TCCState *s1, int token)
{
Operand op;
parse_operand(s1, &op);
switch (ARM_INSTRUCTION_GROUP(token)) {
case TOK_ASM_swieq:
if (op.type != OP_IM8)
expect("immediate 8-bit unsigned integer");
else {
/* Note: Dummy operand (ignored by processor): ARM ref documented 0...255, ARM instruction set documented 24 bit */
asm_emit_opcode(token, (0xf << 24) | op.e.v);
}
break;
default:
expect("unary instruction");
}
}
static void asm_binary_opcode(TCCState *s1, int token)
{
Operand ops[2];
Operand rotation;
uint32_t encoded_rotation = 0;
uint64_t amount;
parse_operand(s1, &ops[0]);
if (tok == ',')
next();
else
expect("','");
parse_operand(s1, &ops[1]);
if (ops[0].type != OP_REG32) {
expect("(destination operand) register");
return;
}
if (ops[0].reg == 15) {
tcc_error("'%s' does not support 'pc' as operand", get_tok_str(token, NULL));
return;
}
if (ops[0].reg == 13)
tcc_warning("Using 'sp' as operand with '%s' is deprecated by ARM", get_tok_str(token, NULL));
if (ops[1].type != OP_REG32) {
2020-12-29 00:40:30 +02:00
switch (ARM_INSTRUCTION_GROUP(token)) {
case TOK_ASM_movteq:
2021-01-03 02:59:16 +02:00
case TOK_ASM_movweq:
2020-12-29 00:40:30 +02:00
if (ops[1].type == OP_IM8 || ops[1].type == OP_IM8N || ops[1].type == OP_IM32) {
if (ops[1].e.v >= 0 && ops[1].e.v <= 0xFFFF) {
uint16_t immediate_value = ops[1].e.v;
2021-01-03 02:59:16 +02:00
switch (ARM_INSTRUCTION_GROUP(token)) {
case TOK_ASM_movteq:
asm_emit_opcode(token, 0x3400000 | (ops[0].reg << 12) | (immediate_value & 0xF000) << 4 | (immediate_value & 0xFFF));
break;
case TOK_ASM_movweq:
asm_emit_opcode(token, 0x3000000 | (ops[0].reg << 12) | (immediate_value & 0xF000) << 4 | (immediate_value & 0xFFF));
break;
}
2020-12-29 00:40:30 +02:00
} else
expect("(source operand) immediate 16 bit value");
} else
expect("(source operand) immediate");
break;
default:
expect("(source operand) register");
}
return;
}
if (ops[1].reg == 15) {
tcc_error("'%s' does not support 'pc' as operand", get_tok_str(token, NULL));
return;
}
if (ops[1].reg == 13)
tcc_warning("Using 'sp' as operand with '%s' is deprecated by ARM", get_tok_str(token, NULL));
if (tok == ',') {
next(); // skip ','
if (tok == TOK_ASM_ror) {
next(); // skip 'ror'
parse_operand(s1, &rotation);
if (rotation.type != OP_IM8) {
expect("immediate value for rotation");
return;
} else {
amount = rotation.e.v;
switch (amount) {
case 8:
encoded_rotation = 1 << 10;
break;
case 16:
encoded_rotation = 2 << 10;
break;
case 24:
encoded_rotation = 3 << 10;
break;
default:
expect("'8' or '16' or '24'");
return;
}
}
}
}
switch (ARM_INSTRUCTION_GROUP(token)) {
case TOK_ASM_clzeq:
if (encoded_rotation)
tcc_error("clz does not support rotation");
asm_emit_opcode(token, 0x16f0f10 | (ops[0].reg << 12) | ops[1].reg);
break;
case TOK_ASM_sxtbeq:
asm_emit_opcode(token, 0x6af0070 | (ops[0].reg << 12) | ops[1].reg | encoded_rotation);
break;
case TOK_ASM_sxtheq:
asm_emit_opcode(token, 0x6bf0070 | (ops[0].reg << 12) | ops[1].reg | encoded_rotation);
break;
case TOK_ASM_uxtbeq:
asm_emit_opcode(token, 0x6ef0070 | (ops[0].reg << 12) | ops[1].reg | encoded_rotation);
break;
case TOK_ASM_uxtheq:
asm_emit_opcode(token, 0x6ff0070 | (ops[0].reg << 12) | ops[1].reg | encoded_rotation);
break;
default:
expect("binary instruction");
}
}
/* data processing and single data transfer instructions only */
#define ENCODE_RN(register_index) ((register_index) << 16)
#define ENCODE_RD(register_index) ((register_index) << 12)
#define ENCODE_SET_CONDITION_CODES (1 << 20)
/* Note: For data processing instructions, "1" means immediate.
Note: For single data transfer instructions, "0" means immediate. */
#define ENCODE_IMMEDIATE_FLAG (1 << 25)
2020-12-27 14:01:34 +02:00
#define ENCODE_BARREL_SHIFTER_SHIFT_BY_REGISTER (1 << 4)
#define ENCODE_BARREL_SHIFTER_MODE_LSL (0 << 5)
#define ENCODE_BARREL_SHIFTER_MODE_LSR (1 << 5)
#define ENCODE_BARREL_SHIFTER_MODE_ASR (2 << 5)
#define ENCODE_BARREL_SHIFTER_MODE_ROR (3 << 5)
#define ENCODE_BARREL_SHIFTER_REGISTER(register_index) ((register_index) << 8)
#define ENCODE_BARREL_SHIFTER_IMMEDIATE(value) ((value) << 7)
static void asm_block_data_transfer_opcode(TCCState *s1, int token)
{
uint32_t opcode;
int op0_exclam;
Operand ops[2];
int nb_ops = 1;
parse_operand(s1, &ops[0]);
if (tok == '!') {
op0_exclam = 1;
next(); // skip '!'
}
if (tok == ',') {
next(); // skip comma
parse_operand(s1, &ops[1]);
++nb_ops;
}
if (nb_ops < 1) {
expect("at least one operand");
return;
} else if (ops[nb_ops - 1].type != OP_REGSET32) {
expect("(last operand) register list");
return;
}
// block data transfer: 1 0 0 P U S W L << 20 (general case):
// operands:
// Rn: bits 19...16 base register
// Register List: bits 15...0
switch (ARM_INSTRUCTION_GROUP(token)) {
case TOK_ASM_pusheq: // TODO: Optimize 1-register case to: str ?, [sp, #-4]!
// Instruction: 1 I=0 P=1 U=0 S=0 W=1 L=0 << 20, op 1101
// operands:
// Rn: base register
// Register List: bits 15...0
if (nb_ops != 1)
expect("exactly one operand");
else
asm_emit_opcode(token, (0x92d << 16) | ops[0].regset); // TODO: base register ?
break;
case TOK_ASM_popeq: // TODO: Optimize 1-register case to: ldr ?, [sp], #4
// Instruction: 1 I=0 P=0 U=1 S=0 W=0 L=1 << 20, op 1101
// operands:
// Rn: base register
// Register List: bits 15...0
if (nb_ops != 1)
expect("exactly one operand");
else
asm_emit_opcode(token, (0x8bd << 16) | ops[0].regset); // TODO: base register ?
break;
case TOK_ASM_stmdaeq:
case TOK_ASM_ldmdaeq:
case TOK_ASM_stmeq:
case TOK_ASM_ldmeq:
case TOK_ASM_stmiaeq:
case TOK_ASM_ldmiaeq:
case TOK_ASM_stmdbeq:
case TOK_ASM_ldmdbeq:
case TOK_ASM_stmibeq:
case TOK_ASM_ldmibeq:
switch (ARM_INSTRUCTION_GROUP(token)) {
case TOK_ASM_stmdaeq: // post-decrement store
opcode = 0x82 << 20;
break;
case TOK_ASM_ldmdaeq: // post-decrement load
opcode = 0x83 << 20;
break;
case TOK_ASM_stmeq: // post-increment store
case TOK_ASM_stmiaeq: // post-increment store
opcode = 0x8a << 20;
break;
case TOK_ASM_ldmeq: // post-increment load
case TOK_ASM_ldmiaeq: // post-increment load
opcode = 0x8b << 20;
break;
case TOK_ASM_stmdbeq: // pre-decrement store
opcode = 0x92 << 20;
break;
case TOK_ASM_ldmdbeq: // pre-decrement load
opcode = 0x93 << 20;
break;
case TOK_ASM_stmibeq: // pre-increment store
opcode = 0x9a << 20;
break;
case TOK_ASM_ldmibeq: // pre-increment load
opcode = 0x9b << 20;
break;
default:
tcc_error("internal error: This place should not be reached (fallback in asm_block_data_transfer_opcode)");
}
// operands:
// Rn: first operand
// Register List: lower bits
if (nb_ops != 2)
expect("exactly two operands");
else if (ops[0].type != OP_REG32)
expect("(first operand) register");
else if (!op0_exclam)
tcc_error("first operand of '%s' should have an exclamation mark", get_tok_str(token, NULL));
else
asm_emit_opcode(token, opcode | ENCODE_RN(ops[0].reg) | ops[1].regset);
break;
default:
expect("block data transfer instruction");
}
}
2020-12-27 14:01:34 +02:00
static uint32_t asm_encode_shift(Operand* shift)
{
uint64_t amount;
uint32_t operands = 0;
switch (shift->type) {
case OP_REG32:
if (shift->reg == 15)
tcc_error("r15 cannot be used as a shift count");
else {
operands = ENCODE_BARREL_SHIFTER_SHIFT_BY_REGISTER;
operands |= ENCODE_BARREL_SHIFTER_REGISTER(shift->reg);
}
break;
case OP_IM8:
amount = shift->e.v;
if (amount > 0 && amount < 32)
operands = ENCODE_BARREL_SHIFTER_IMMEDIATE(amount);
else
tcc_error("shift count out of range");
break;
default:
tcc_error("unknown shift amount");
}
return operands;
}
static void asm_data_processing_opcode(TCCState *s1, int token)
{
Operand ops[3];
int nb_ops;
Operand shift = {};
int nb_shift = 0;
uint32_t operands = 0;
/* modulo 16 entries per instruction for the different condition codes */
uint32_t opcode_idx = (ARM_INSTRUCTION_GROUP(token) - TOK_ASM_andeq) >> 4;
uint32_t opcode_nos = opcode_idx >> 1; // without "s"; "OpCode" in ARM docs
for (nb_ops = 0; nb_ops < sizeof(ops)/sizeof(ops[0]); ) {
if (tok == TOK_ASM_asl || tok == TOK_ASM_lsl || tok == TOK_ASM_lsr || tok == TOK_ASM_asr || tok == TOK_ASM_ror || tok == TOK_ASM_rrx)
break;
parse_operand(s1, &ops[nb_ops]);
++nb_ops;
if (tok != ',')
break;
next(); // skip ','
}
if (tok == ',')
next();
switch (tok) {
case TOK_ASM_asl:
case TOK_ASM_lsl:
case TOK_ASM_asr:
case TOK_ASM_lsr:
case TOK_ASM_ror:
switch (tok) {
case TOK_ASM_asl:
/* fallthrough */
case TOK_ASM_lsl:
operands |= ENCODE_BARREL_SHIFTER_MODE_LSL;
break;
case TOK_ASM_asr:
operands |= ENCODE_BARREL_SHIFTER_MODE_ASR;
break;
case TOK_ASM_lsr:
operands |= ENCODE_BARREL_SHIFTER_MODE_LSR;
break;
case TOK_ASM_ror:
operands |= ENCODE_BARREL_SHIFTER_MODE_ROR;
break;
}
next();
parse_operand(s1, &shift);
nb_shift = 1;
break;
case TOK_ASM_rrx:
next();
operands |= ENCODE_BARREL_SHIFTER_MODE_ROR;
break;
}
if (nb_ops < 2)
expect("at least two operands");
else if (nb_ops == 2) {
memcpy(&ops[2], &ops[1], sizeof(ops[1])); // move ops[2]
memcpy(&ops[1], &ops[0], sizeof(ops[0])); // ops[1] was implicit
nb_ops = 3;
} else if (nb_ops == 3) {
if (opcode_nos == 0xd || opcode_nos == 0xf || opcode_nos == 0xa || opcode_nos == 0xb || opcode_nos == 0x8 || opcode_nos == 0x9) { // mov, mvn, cmp, cmn, tst, teq
tcc_error("'%s' cannot be used with three operands", get_tok_str(token, NULL));
return;
}
}
if (nb_ops != 3) {
expect("two or three operands");
return;
} else {
uint32_t opcode = 0;
uint32_t immediate_value;
uint8_t half_immediate_rotation;
if (nb_shift && shift.type == OP_REG32) {
if ((ops[0].type == OP_REG32 && ops[0].reg == 15) ||
(ops[1].type == OP_REG32 && ops[1].reg == 15)) {
tcc_error("Using the 'pc' register in data processing instructions that have a register-controlled shift is not implemented by ARM");
return;
}
}
// data processing (general case):
// operands:
// Rn: bits 19...16 (first operand)
// Rd: bits 15...12 (destination)
// Operand2: bits 11...0 (second operand); depending on I that's either a register or an immediate
// operator:
// bits 24...21: "OpCode"--see below
/* operations in the token list are ordered by opcode */
opcode = opcode_nos << 21; // drop "s"
if (ops[0].type != OP_REG32)
expect("(destination operand) register");
else if (opcode_nos == 0xa || opcode_nos == 0xb || opcode_nos == 0x8 || opcode_nos == 0x9) // cmp, cmn, tst, teq
operands |= ENCODE_SET_CONDITION_CODES; // force S set, otherwise it's a completely different instruction.
else
operands |= ENCODE_RD(ops[0].reg);
if (ops[1].type != OP_REG32)
expect("(first source operand) register");
else if (!(opcode_nos == 0xd || opcode_nos == 0xf)) // not: mov, mvn (those have only one source operand)
operands |= ENCODE_RN(ops[1].reg);
switch (ops[2].type) {
case OP_REG32:
operands |= ops[2].reg;
break;
case OP_IM8:
case OP_IM32:
operands |= ENCODE_IMMEDIATE_FLAG;
immediate_value = ops[2].e.v;
for (half_immediate_rotation = 0; half_immediate_rotation < 16; ++half_immediate_rotation) {
if (immediate_value >= 0x00 && immediate_value < 0x100)
break;
// rotate left by two
immediate_value = ((immediate_value & 0x3FFFFFFF) << 2) | ((immediate_value & 0xC0000000) >> 30);
}
if (half_immediate_rotation >= 16) {
/* fallthrough */
} else {
operands |= immediate_value;
operands |= half_immediate_rotation << 8;
break;
}
case OP_IM8N: // immediate negative value
operands |= ENCODE_IMMEDIATE_FLAG;
immediate_value = ops[2].e.v;
/* Instruction swapping:
0001 = EOR - Rd:= Op1 EOR Op2 -> difficult
0011 = RSB - Rd:= Op2 - Op1 -> difficult
0111 = RSC - Rd:= Op2 - Op1 + C -> difficult
1000 = TST - CC on: Op1 AND Op2 -> difficult
1001 = TEQ - CC on: Op1 EOR Op2 -> difficult
1100 = ORR - Rd:= Op1 OR Op2 -> difficult
*/
switch (opcode_nos) {
case 0x0: // AND - Rd:= Op1 AND Op2
opcode = 0xe << 21; // BIC
immediate_value = ~immediate_value;
break;
case 0x2: // SUB - Rd:= Op1 - Op2
opcode = 0x4 << 21; // ADD
immediate_value = -immediate_value;
break;
case 0x4: // ADD - Rd:= Op1 + Op2
opcode = 0x2 << 21; // SUB
immediate_value = -immediate_value;
break;
case 0x5: // ADC - Rd:= Op1 + Op2 + C
opcode = 0x6 << 21; // SBC
immediate_value = ~immediate_value;
break;
case 0x6: // SBC - Rd:= Op1 - Op2 + C
opcode = 0x5 << 21; // ADC
immediate_value = ~immediate_value;
break;
case 0xa: // CMP - CC on: Op1 - Op2
opcode = 0xb << 21; // CMN
immediate_value = -immediate_value;
break;
case 0xb: // CMN - CC on: Op1 + Op2
opcode = 0xa << 21; // CMP
immediate_value = -immediate_value;
break;
case 0xd: // MOV - Rd:= Op2
opcode = 0xf << 21; // MVN
immediate_value = ~immediate_value;
break;
case 0xe: // BIC - Rd:= Op1 AND NOT Op2
opcode = 0x0 << 21; // AND
immediate_value = ~immediate_value;
break;
case 0xf: // MVN - Rd:= NOT Op2
opcode = 0xd << 21; // MOV
immediate_value = ~immediate_value;
break;
default:
tcc_error("cannot use '%s' with a negative immediate value", get_tok_str(token, NULL));
}
for (half_immediate_rotation = 0; half_immediate_rotation < 16; ++half_immediate_rotation) {
if (immediate_value >= 0x00 && immediate_value < 0x100)
break;
// rotate left by two
immediate_value = ((immediate_value & 0x3FFFFFFF) << 2) | ((immediate_value & 0xC0000000) >> 30);
}
if (half_immediate_rotation >= 16) {
immediate_value = ops[2].e.v;
tcc_error("immediate value 0x%X cannot be encoded into ARM immediate", (unsigned) immediate_value);
return;
}
operands |= immediate_value;
operands |= half_immediate_rotation << 8;
break;
default:
expect("(second source operand) register or immediate value");
}
if (nb_shift) {
if (operands & ENCODE_IMMEDIATE_FLAG)
tcc_error("immediate rotation not implemented");
else
operands |= asm_encode_shift(&shift);
}
/* S=0 and S=1 entries alternate one after another, in that order */
opcode |= (opcode_idx & 1) ? ENCODE_SET_CONDITION_CODES : 0;
asm_emit_opcode(token, opcode | operands);
}
}
2020-12-27 14:01:34 +02:00
static void asm_shift_opcode(TCCState *s1, int token)
{
Operand ops[3];
int nb_ops;
int definitely_neutral = 0;
2020-12-27 14:01:34 +02:00
uint32_t opcode = 0xd << 21; // MOV
uint32_t operands = 0;
for (nb_ops = 0; nb_ops < sizeof(ops)/sizeof(ops[0]); ++nb_ops) {
parse_operand(s1, &ops[nb_ops]);
if (tok != ',') {
++nb_ops;
break;
}
next(); // skip ','
}
if (nb_ops < 2) {
expect("at least two operands");
return;
}
if (ops[0].type != OP_REG32) {
2020-12-27 14:01:34 +02:00
expect("(destination operand) register");
return;
} else
2020-12-27 14:01:34 +02:00
operands |= ENCODE_RD(ops[0].reg);
if (nb_ops == 2) {
switch (ARM_INSTRUCTION_GROUP(token)) {
case TOK_ASM_rrxseq:
opcode |= ENCODE_SET_CONDITION_CODES;
/* fallthrough */
case TOK_ASM_rrxeq:
if (ops[1].type == OP_REG32) {
operands |= ops[1].reg;
operands |= ENCODE_BARREL_SHIFTER_MODE_ROR;
asm_emit_opcode(token, opcode | operands);
} else
tcc_error("(first source operand) register");
return;
default:
memcpy(&ops[2], &ops[1], sizeof(ops[1])); // move ops[2]
memcpy(&ops[1], &ops[0], sizeof(ops[0])); // ops[1] was implicit
nb_ops = 3;
}
}
if (nb_ops != 3) {
expect("two or three operands");
return;
}
switch (ARM_INSTRUCTION_GROUP(token)) {
case TOK_ASM_lslseq:
case TOK_ASM_lsrseq:
case TOK_ASM_asrseq:
case TOK_ASM_rorseq:
opcode |= ENCODE_SET_CONDITION_CODES;
break;
}
2020-12-27 14:01:34 +02:00
switch (ops[1].type) {
case OP_REG32:
operands |= ops[1].reg;
break;
case OP_IM8:
operands |= ENCODE_IMMEDIATE_FLAG;
operands |= ops[1].e.v;
break;
}
switch (ops[2].type) {
case OP_REG32:
if ((ops[0].type == OP_REG32 && ops[0].reg == 15) ||
(ops[1].type == OP_REG32 && ops[1].reg == 15)) {
tcc_error("Using the 'pc' register in data processing instructions that have a register-controlled shift is not implemented by ARM");
}
2020-12-27 14:01:34 +02:00
operands |= asm_encode_shift(&ops[2]);
break;
case OP_IM8:
if (ops[2].e.v)
operands |= asm_encode_shift(&ops[2]);
else
definitely_neutral = 1;
break;
}
2020-12-27 14:01:34 +02:00
if (!definitely_neutral) switch (ARM_INSTRUCTION_GROUP(token)) {
2020-12-27 14:01:34 +02:00
case TOK_ASM_lslseq:
case TOK_ASM_lsleq:
operands |= ENCODE_BARREL_SHIFTER_MODE_LSL;
break;
case TOK_ASM_lsrseq:
case TOK_ASM_lsreq:
operands |= ENCODE_BARREL_SHIFTER_MODE_LSR;
break;
case TOK_ASM_asrseq:
case TOK_ASM_asreq:
operands |= ENCODE_BARREL_SHIFTER_MODE_ASR;
break;
case TOK_ASM_rorseq:
case TOK_ASM_roreq:
operands |= ENCODE_BARREL_SHIFTER_MODE_ROR;
break;
default:
expect("shift instruction");
return;
}
asm_emit_opcode(token, opcode | operands);
}
static void asm_multiplication_opcode(TCCState *s1, int token)
{
Operand ops[4];
int nb_ops = 0;
uint32_t opcode = 0x90;
for (nb_ops = 0; nb_ops < sizeof(ops)/sizeof(ops[0]); ++nb_ops) {
parse_operand(s1, &ops[nb_ops]);
if (tok != ',') {
++nb_ops;
break;
}
next(); // skip ','
}
if (nb_ops < 2)
expect("at least two operands");
else if (nb_ops == 2) {
switch (ARM_INSTRUCTION_GROUP(token)) {
case TOK_ASM_mulseq:
case TOK_ASM_muleq:
memcpy(&ops[2], &ops[0], sizeof(ops[1])); // ARM is actually like this!
break;
default:
expect("at least three operands");
return;
}
nb_ops = 3;
}
// multiply (special case):
// operands:
// Rd: bits 19...16
// Rm: bits 3...0
// Rs: bits 11...8
// Rn: bits 15...12
if (ops[0].type == OP_REG32)
opcode |= ops[0].reg << 16;
else
expect("(destination operand) register");
if (ops[1].type == OP_REG32)
opcode |= ops[1].reg;
else
expect("(first source operand) register");
if (ops[2].type == OP_REG32)
opcode |= ops[2].reg << 8;
else
expect("(second source operand) register");
if (nb_ops > 3) {
if (ops[3].type == OP_REG32)
opcode |= ops[3].reg << 12;
else
expect("(third source operand) register");
}
switch (ARM_INSTRUCTION_GROUP(token)) {
case TOK_ASM_mulseq:
opcode |= 1 << 20; // Status
/* fallthrough */
case TOK_ASM_muleq:
if (nb_ops != 3)
expect("three operands");
else {
asm_emit_opcode(token, opcode);
}
break;
case TOK_ASM_mlaseq:
opcode |= 1 << 20; // Status
/* fallthrough */
case TOK_ASM_mlaeq:
if (nb_ops != 4)
expect("four operands");
else {
opcode |= 1 << 21; // Accumulate
asm_emit_opcode(token, opcode);
}
break;
default:
expect("known multiplication instruction");
}
}
static void asm_long_multiplication_opcode(TCCState *s1, int token)
{
Operand ops[4];
int nb_ops = 0;
uint32_t opcode = 0x90 | (1 << 23);
for (nb_ops = 0; nb_ops < sizeof(ops)/sizeof(ops[0]); ++nb_ops) {
parse_operand(s1, &ops[nb_ops]);
if (tok != ',') {
++nb_ops;
break;
}
next(); // skip ','
}
if (nb_ops != 4) {
expect("four operands");
return;
}
// long multiply (special case):
// operands:
// RdLo: bits 15...12
// RdHi: bits 19...16
// Rs: bits 11...8
// Rm: bits 3...0
if (ops[0].type == OP_REG32)
opcode |= ops[0].reg << 12;
else
expect("(destination lo accumulator) register");
if (ops[1].type == OP_REG32)
opcode |= ops[1].reg << 16;
else
expect("(destination hi accumulator) register");
if (ops[2].type == OP_REG32)
opcode |= ops[2].reg;
else
expect("(first source operand) register");
if (ops[3].type == OP_REG32)
opcode |= ops[3].reg << 8;
else
expect("(second source operand) register");
switch (ARM_INSTRUCTION_GROUP(token)) {
case TOK_ASM_smullseq:
opcode |= 1 << 20; // Status
/* fallthrough */
case TOK_ASM_smulleq:
opcode |= 1 << 22; // signed
asm_emit_opcode(token, opcode);
break;
case TOK_ASM_umullseq:
opcode |= 1 << 20; // Status
/* fallthrough */
case TOK_ASM_umulleq:
asm_emit_opcode(token, opcode);
break;
case TOK_ASM_smlalseq:
opcode |= 1 << 20; // Status
/* fallthrough */
case TOK_ASM_smlaleq:
opcode |= 1 << 22; // signed
opcode |= 1 << 21; // Accumulate
asm_emit_opcode(token, opcode);
break;
case TOK_ASM_umlalseq:
opcode |= 1 << 20; // Status
/* fallthrough */
case TOK_ASM_umlaleq:
opcode |= 1 << 21; // Accumulate
asm_emit_opcode(token, opcode);
break;
default:
expect("known long multiplication instruction");
}
}
2020-12-26 18:07:02 +02:00
static void asm_single_data_transfer_opcode(TCCState *s1, int token)
{
Operand ops[3];
Operand strex_operand;
2020-12-26 18:07:02 +02:00
int exclam = 0;
int closed_bracket = 0;
int op2_minus = 0;
uint32_t opcode = 0;
2020-12-26 18:07:02 +02:00
// Note: ldr r0, [r4, #4] ; simple offset: r0 = *(int*)(r4+4); r4 unchanged
// Note: ldr r0, [r4, #4]! ; pre-indexed: r0 = *(int*)(r4+4); r4 = r4+4
// Note: ldr r0, [r4], #4 ; post-indexed: r0 = *(int*)(r4+0); r4 = r4+4
parse_operand(s1, &ops[0]);
if (ops[0].type == OP_REG32)
opcode |= ENCODE_RD(ops[0].reg);
else {
expect("(destination operand) register");
return;
}
if (tok != ',')
expect("at least two arguments");
2020-12-26 18:07:02 +02:00
else
next(); // skip ','
switch (ARM_INSTRUCTION_GROUP(token)) {
case TOK_ASM_strexbeq:
case TOK_ASM_strexeq:
parse_operand(s1, &strex_operand);
if (strex_operand.type != OP_REG32) {
expect("register");
return;
}
if (tok != ',')
expect("at least three arguments");
else
next(); // skip ','
break;
}
2020-12-26 18:07:02 +02:00
if (tok != '[')
expect("'['");
else
next(); // skip '['
parse_operand(s1, &ops[1]);
if (ops[1].type == OP_REG32)
opcode |= ENCODE_RN(ops[1].reg);
else {
expect("(first source operand) register");
return;
}
if (tok == ']') {
next();
closed_bracket = 1;
// exclam = 1; // implicit in hardware; don't do it in software
}
if (tok != ',')
expect("','");
else
next(); // skip ','
if (tok == '-') {
op2_minus = 1;
next();
}
parse_operand(s1, &ops[2]);
if (!closed_bracket) {
if (tok != ']')
expect("']'");
else
next(); // skip ']'
opcode |= 1 << 24; // add offset before transfer
if (tok == '!') {
exclam = 1;
next(); // skip '!'
}
}
// single data transfer: 0 1 I P U B W L << 20 (general case):
// operands:
// Rd: destination operand [ok]
// Rn: first source operand [ok]
// Operand2: bits 11...0 [ok]
// I: immediate operand? [ok]
// P: Pre/post indexing is PRE: Add offset before transfer [ok]
// U: Up/down is up? (*adds* offset to base) [ok]
// B: Byte/word is byte? TODO
// W: Write address back into base? [ok]
// L: Load/store is load? [ok]
if (exclam)
opcode |= 1 << 21; // write offset back into register
if (ops[2].type == OP_IM32 || ops[2].type == OP_IM8 || ops[2].type == OP_IM8N) {
int v = ops[2].e.v;
if (op2_minus)
tcc_error("minus before '#' not supported for immediate values");
if (v >= 0) {
opcode |= 1 << 23; // up
if (v >= 0x1000)
tcc_error("offset out of range for '%s'", get_tok_str(token, NULL));
else
opcode |= v;
} else { // down
if (v <= -0x1000)
tcc_error("offset out of range for '%s'", get_tok_str(token, NULL));
else
opcode |= -v;
}
} else if (ops[2].type == OP_REG32) {
if (!op2_minus)
opcode |= 1 << 23; // up
opcode |= ENCODE_IMMEDIATE_FLAG; /* if set, it means it's NOT immediate */
opcode |= ops[2].reg;
} else
expect("register");
switch (ARM_INSTRUCTION_GROUP(token)) {
case TOK_ASM_strbeq:
opcode |= 1 << 22; // B
/* fallthrough */
case TOK_ASM_streq:
opcode |= 1 << 26; // Load/Store
2020-12-26 18:07:02 +02:00
asm_emit_opcode(token, opcode);
break;
case TOK_ASM_ldrbeq:
opcode |= 1 << 22; // B
/* fallthrough */
case TOK_ASM_ldreq:
opcode |= 1 << 20; // L
opcode |= 1 << 26; // Load/Store
asm_emit_opcode(token, opcode);
break;
case TOK_ASM_strexbeq:
opcode |= 1 << 22; // B
/* fallthrough */
case TOK_ASM_strexeq:
if (opcode & 0xFFF) {
tcc_error("offset not allowed with 'strex'");
return;
} else if (opcode & ENCODE_IMMEDIATE_FLAG) { // if set, it means it's NOT immediate
tcc_error("offset not allowed with 'strex'");
return;
}
if ((opcode & (1 << 24)) == 0) { // add offset after transfer
tcc_error("adding offset after transfer not allowed with 'strex'");
return;
}
opcode |= 0xf90;
opcode |= strex_operand.reg;
asm_emit_opcode(token, opcode);
break;
case TOK_ASM_ldrexbeq:
opcode |= 1 << 22; // B
/* fallthrough */
case TOK_ASM_ldrexeq:
if (opcode & 0xFFF) {
tcc_error("offset not allowed with 'ldrex'");
return;
} else if (opcode & ENCODE_IMMEDIATE_FLAG) { // if set, it means it's NOT immediate
tcc_error("offset not allowed with 'ldrex'");
return;
}
if ((opcode & (1 << 24)) == 0) { // add offset after transfer
tcc_error("adding offset after transfer not allowed with 'ldrex'");
return;
}
opcode |= 1 << 20; // L
opcode |= 0x00f;
opcode |= 0xf90;
2020-12-26 18:07:02 +02:00
asm_emit_opcode(token, opcode);
break;
default:
expect("data transfer instruction");
}
}
2020-12-26 18:19:25 +02:00
/* Note: almost dupe of encbranch in arm-gen.c */
static uint32_t encbranchoffset(int pos, int addr, int fail)
{
addr-=pos+8;
addr/=4;
2021-01-05 00:26:24 +02:00
if(addr>=0x7fffff || addr<-0x800000) {
2020-12-26 18:19:25 +02:00
if(fail)
2021-01-05 00:26:24 +02:00
tcc_error("branch offset is too far");
2020-12-26 18:19:25 +02:00
return 0;
}
return /*not 0x0A000000|*/(addr&0xffffff);
}
static void asm_branch_opcode(TCCState *s1, int token)
{
int jmp_disp = 0;
Operand op;
2021-01-05 00:26:24 +02:00
ExprValue e;
ElfSym *esym;
switch (ARM_INSTRUCTION_GROUP(token)) {
case TOK_ASM_beq:
case TOK_ASM_bleq:
asm_expr(s1, &e);
esym = elfsym(e.sym);
if (!esym || esym->st_shndx != cur_text_section->sh_num) {
tcc_error("invalid branch target");
2020-12-26 18:19:25 +02:00
return;
}
2021-01-05 00:26:24 +02:00
jmp_disp = encbranchoffset(ind, e.v + esym->st_value, 1);
break;
default:
parse_operand(s1, &op);
break;
2020-12-26 18:19:25 +02:00
}
switch (ARM_INSTRUCTION_GROUP(token)) {
case TOK_ASM_beq:
2021-01-05 00:26:24 +02:00
asm_emit_opcode(token, (0xa << 24) | (jmp_disp & 0xffffff));
2020-12-26 18:19:25 +02:00
break;
case TOK_ASM_bleq:
2021-01-05 00:26:24 +02:00
asm_emit_opcode(token, (0xb << 24) | (jmp_disp & 0xffffff));
2020-12-26 18:19:25 +02:00
break;
case TOK_ASM_bxeq:
if (op.type != OP_REG32)
expect("register");
else
asm_emit_opcode(token, (0x12fff1 << 4) | op.reg);
break;
case TOK_ASM_blxeq:
if (op.type != OP_REG32)
expect("register");
else
asm_emit_opcode(token, (0x12fff3 << 4) | op.reg);
break;
default:
expect("branch instruction");
}
}
2020-12-26 17:39:31 +02:00
ST_FUNC void asm_opcode(TCCState *s1, int token)
{
while (token == TOK_LINEFEED) {
next();
token = tok;
}
if (token == TOK_EOF)
return;
if (token < TOK_ASM_nopeq) {
expect("instruction");
return;
}
switch (ARM_INSTRUCTION_GROUP(token)) {
case TOK_ASM_pusheq:
case TOK_ASM_popeq:
case TOK_ASM_stmdaeq:
case TOK_ASM_ldmdaeq:
case TOK_ASM_stmeq:
case TOK_ASM_ldmeq:
case TOK_ASM_stmiaeq:
case TOK_ASM_ldmiaeq:
case TOK_ASM_stmdbeq:
case TOK_ASM_ldmdbeq:
case TOK_ASM_stmibeq:
case TOK_ASM_ldmibeq:
return asm_block_data_transfer_opcode(s1, token);
2020-12-26 17:39:31 +02:00
case TOK_ASM_nopeq:
2020-12-26 17:46:08 +02:00
case TOK_ASM_wfeeq:
case TOK_ASM_wfieq:
2020-12-26 17:39:31 +02:00
return asm_nullary_opcode(token);
2020-12-26 17:48:47 +02:00
case TOK_ASM_swieq:
return asm_unary_opcode(s1, token);
2020-12-26 18:19:25 +02:00
case TOK_ASM_beq:
case TOK_ASM_bleq:
case TOK_ASM_bxeq:
case TOK_ASM_blxeq:
return asm_branch_opcode(s1, token);
case TOK_ASM_clzeq:
case TOK_ASM_sxtbeq:
case TOK_ASM_sxtheq:
case TOK_ASM_uxtbeq:
case TOK_ASM_uxtheq:
2020-12-29 00:40:30 +02:00
case TOK_ASM_movteq:
2021-01-03 02:59:16 +02:00
case TOK_ASM_movweq:
return asm_binary_opcode(s1, token);
2020-12-26 18:07:02 +02:00
case TOK_ASM_ldreq:
case TOK_ASM_ldrbeq:
case TOK_ASM_streq:
case TOK_ASM_strbeq:
case TOK_ASM_ldrexeq:
case TOK_ASM_ldrexbeq:
case TOK_ASM_strexeq:
case TOK_ASM_strexbeq:
2020-12-26 18:07:02 +02:00
return asm_single_data_transfer_opcode(s1, token);
case TOK_ASM_andeq:
case TOK_ASM_eoreq:
case TOK_ASM_subeq:
case TOK_ASM_rsbeq:
case TOK_ASM_addeq:
case TOK_ASM_adceq:
case TOK_ASM_sbceq:
case TOK_ASM_rsceq:
case TOK_ASM_tsteq:
case TOK_ASM_teqeq:
case TOK_ASM_cmpeq:
case TOK_ASM_cmneq:
case TOK_ASM_orreq:
case TOK_ASM_moveq:
case TOK_ASM_biceq:
case TOK_ASM_mvneq:
case TOK_ASM_andseq:
case TOK_ASM_eorseq:
case TOK_ASM_subseq:
case TOK_ASM_rsbseq:
case TOK_ASM_addseq:
case TOK_ASM_adcseq:
case TOK_ASM_sbcseq:
case TOK_ASM_rscseq:
// case TOK_ASM_tstseq:
// case TOK_ASM_teqseq:
// case TOK_ASM_cmpseq:
// case TOK_ASM_cmnseq:
case TOK_ASM_orrseq:
case TOK_ASM_movseq:
case TOK_ASM_bicseq:
case TOK_ASM_mvnseq:
return asm_data_processing_opcode(s1, token);
2020-12-27 14:01:34 +02:00
case TOK_ASM_lsleq:
case TOK_ASM_lslseq:
case TOK_ASM_lsreq:
case TOK_ASM_lsrseq:
case TOK_ASM_asreq:
case TOK_ASM_asrseq:
case TOK_ASM_roreq:
case TOK_ASM_rorseq:
case TOK_ASM_rrxseq:
case TOK_ASM_rrxeq:
return asm_shift_opcode(s1, token);
case TOK_ASM_muleq:
case TOK_ASM_mulseq:
case TOK_ASM_mlaeq:
case TOK_ASM_mlaseq:
return asm_multiplication_opcode(s1, token);
case TOK_ASM_smulleq:
case TOK_ASM_smullseq:
case TOK_ASM_umulleq:
case TOK_ASM_umullseq:
case TOK_ASM_smlaleq:
case TOK_ASM_smlalseq:
case TOK_ASM_umlaleq:
case TOK_ASM_umlalseq:
return asm_long_multiplication_opcode(s1, token);
2020-12-26 17:39:31 +02:00
default:
expect("known instruction");
}
}
ST_FUNC void subst_asm_operand(CString *add_str, SValue *sv, int modifier)
{
2021-01-01 20:25:20 +02:00
int r, reg, size, val;
char buf[64];
r = sv->r;
if ((r & VT_VALMASK) == VT_CONST) {
if (!(r & VT_LVAL) && modifier != 'c' && modifier != 'n' &&
modifier != 'P')
cstr_ccat(add_str, '#');
if (r & VT_SYM) {
const char *name = get_tok_str(sv->sym->v, NULL);
if (sv->sym->v >= SYM_FIRST_ANOM) {
/* In case of anonymous symbols ("L.42", used
for static data labels) we can't find them
in the C symbol table when later looking up
this name. So enter them now into the asm label
list when we still know the symbol. */
get_asm_sym(tok_alloc(name, strlen(name))->tok, sv->sym);
}
if (tcc_state->leading_underscore)
cstr_ccat(add_str, '_');
cstr_cat(add_str, name, -1);
if ((uint32_t) sv->c.i == 0)
goto no_offset;
cstr_ccat(add_str, '+');
}
val = sv->c.i;
if (modifier == 'n')
val = -val;
snprintf(buf, sizeof(buf), "%d", (int) sv->c.i);
cstr_cat(add_str, buf, -1);
no_offset:;
} else if ((r & VT_VALMASK) == VT_LOCAL) {
snprintf(buf, sizeof(buf), "[fp,#%d]", (int) sv->c.i);
cstr_cat(add_str, buf, -1);
} else if (r & VT_LVAL) {
reg = r & VT_VALMASK;
if (reg >= VT_CONST)
tcc_internal_error("");
snprintf(buf, sizeof(buf), "[%s]",
get_tok_str(TOK_ASM_r0 + reg, NULL));
cstr_cat(add_str, buf, -1);
} else {
/* register case */
reg = r & VT_VALMASK;
if (reg >= VT_CONST)
tcc_internal_error("");
/* choose register operand size */
if ((sv->type.t & VT_BTYPE) == VT_BYTE ||
(sv->type.t & VT_BTYPE) == VT_BOOL)
size = 1;
else if ((sv->type.t & VT_BTYPE) == VT_SHORT)
size = 2;
else
size = 4;
if (modifier == 'b') {
size = 1;
} else if (modifier == 'w') {
size = 2;
} else if (modifier == 'k') {
size = 4;
}
switch (size) {
default:
reg = TOK_ASM_r0 + reg;
break;
}
snprintf(buf, sizeof(buf), "%s", get_tok_str(reg, NULL));
cstr_cat(add_str, buf, -1);
}
}
/* generate prolog and epilog code for asm statement */
ST_FUNC void asm_gen_code(ASMOperand *operands, int nb_operands,
2021-01-01 05:15:00 +02:00
int nb_outputs, int is_output,
uint8_t *clobber_regs,
int out_reg)
{
2021-01-01 05:15:00 +02:00
uint8_t regs_allocated[NB_ASM_REGS];
ASMOperand *op;
int i, reg;
uint32_t saved_regset = 0;
// TODO: Check non-E ABI.
// Note: Technically, r13 (sp) is also callee-saved--but that does not matter yet
static uint8_t reg_saved[] = { 4, 5, 6, 7, 8, 9 /* Note: sometimes special reg "sb" */ , 10, 11 };
/* mark all used registers */
memcpy(regs_allocated, clobber_regs, sizeof(regs_allocated));
for(i = 0; i < nb_operands;i++) {
op = &operands[i];
if (op->reg >= 0)
regs_allocated[op->reg] = 1;
}
for(i = 0; i < sizeof(reg_saved)/sizeof(reg_saved[0]); i++) {
reg = reg_saved[i];
if (regs_allocated[reg])
saved_regset |= 1 << reg;
}
if (!is_output) { // prolog
/* generate reg save code */
if (saved_regset)
gen_le32(0xe92d0000 | saved_regset); // push {...}
/* generate load code */
for(i = 0; i < nb_operands; i++) {
op = &operands[i];
if (op->reg >= 0) {
if ((op->vt->r & VT_VALMASK) == VT_LLOCAL &&
op->is_memory) {
/* memory reference case (for both input and
output cases) */
SValue sv;
sv = *op->vt;
sv.r = (sv.r & ~VT_VALMASK) | VT_LOCAL | VT_LVAL;
sv.type.t = VT_PTR;
load(op->reg, &sv);
} else if (i >= nb_outputs || op->is_rw) { // not write-only
/* load value in register */
load(op->reg, op->vt);
if (op->is_llong)
tcc_error("long long not implemented");
}
}
}
} else { // epilog
/* generate save code */
for(i = 0 ; i < nb_outputs; i++) {
op = &operands[i];
if (op->reg >= 0) {
if ((op->vt->r & VT_VALMASK) == VT_LLOCAL) {
if (!op->is_memory) {
SValue sv;
sv = *op->vt;
sv.r = (sv.r & ~VT_VALMASK) | VT_LOCAL;
sv.type.t = VT_PTR;
load(out_reg, &sv);
sv = *op->vt;
sv.r = (sv.r & ~VT_VALMASK) | out_reg;
store(op->reg, &sv);
}
} else {
store(op->reg, op->vt);
if (op->is_llong)
tcc_error("long long not implemented");
}
}
}
/* generate reg restore code */
if (saved_regset)
gen_le32(0xe8bd0000 | saved_regset); // pop {...}
}
}
/* return the constraint priority (we allocate first the lowest
numbered constraints) */
static inline int constraint_priority(const char *str)
{
int priority, c, pr;
/* we take the lowest priority */
priority = 0;
for(;;) {
c = *str;
if (c == '\0')
break;
str++;
switch(c) {
case 'l': // in ARM mode, that's an alias for 'r' [ARM].
case 'r': // register [general]
case 'p': // valid memory address for load,store [general]
pr = 3;
break;
case 'M': // integer constant for shifts [ARM]
case 'I': // integer valid for data processing instruction immediate
case 'J': // integer in range -4095...4095
case 'i': // immediate integer operand, including symbolic constants [general]
case 'm': // memory operand [general]
case 'g': // general-purpose-register, memory, immediate integer [general]
pr = 4;
break;
default:
tcc_error("unknown constraint '%c'", c);
pr = 0;
}
if (pr > priority)
priority = pr;
}
return priority;
}
static const char *skip_constraint_modifiers(const char *p)
{
/* Constraint modifier:
= Operand is written to by this instruction
+ Operand is both read and written to by this instruction
% Instruction is commutative for this operand and the following operand.
Per-alternative constraint modifier:
& Operand is clobbered before the instruction is done using the input operands
*/
while (*p == '=' || *p == '&' || *p == '+' || *p == '%')
p++;
return p;
}
#define REG_OUT_MASK 0x01
#define REG_IN_MASK 0x02
#define is_reg_allocated(reg) (regs_allocated[reg] & reg_mask)
ST_FUNC void asm_compute_constraints(ASMOperand *operands,
int nb_operands, int nb_outputs,
const uint8_t *clobber_regs,
int *pout_reg)
{
/* overall format: modifier, then ,-seperated list of alternatives; all operands for a single instruction must have the same number of alternatives */
/* TODO: Simple constraints
whitespace ignored
o memory operand that is offsetable
V memory but not offsetable
< memory operand with autodecrement addressing is allowed. Restrictions apply.
> memory operand with autoincrement addressing is allowed. Restrictions apply.
n immediate integer operand with a known numeric value
E immediate floating operand (const_double) is allowed, but only if target=host
F immediate floating operand (const_double or const_vector) is allowed
s immediate integer operand whose value is not an explicit integer
X any operand whatsoever
0...9 (postfix); (can also be more than 1 digit number); an operand that matches the specified operand number is allowed
*/
/* TODO: ARM constraints:
k the stack pointer register
G the floating-point constant 0.0
Q memory reference where the exact address is in a single register ("m" is preferable for asm statements)
R an item in the constant pool
S symbol in the text segment of the current file
[ Uv memory reference suitable for VFP load/store insns (reg+constant offset)]
[ Uy memory reference suitable for iWMMXt load/store instructions]
Uq memory reference suitable for the ARMv4 ldrsb instruction
*/
ASMOperand *op;
int sorted_op[MAX_ASM_OPERANDS];
int i, j, k, p1, p2, tmp, reg, c, reg_mask;
const char *str;
uint8_t regs_allocated[NB_ASM_REGS];
/* init fields */
for (i = 0; i < nb_operands; i++) {
op = &operands[i];
op->input_index = -1;
op->ref_index = -1;
op->reg = -1;
op->is_memory = 0;
op->is_rw = 0;
}
/* compute constraint priority and evaluate references to output
constraints if input constraints */
for (i = 0; i < nb_operands; i++) {
op = &operands[i];
str = op->constraint;
str = skip_constraint_modifiers(str);
if (isnum(*str) || *str == '[') {
/* this is a reference to another constraint */
k = find_constraint(operands, nb_operands, str, NULL);
if ((unsigned) k >= i || i < nb_outputs)
tcc_error("invalid reference in constraint %d ('%s')",
i, str);
op->ref_index = k;
if (operands[k].input_index >= 0)
tcc_error("cannot reference twice the same operand");
operands[k].input_index = i;
op->priority = 5;
} else if ((op->vt->r & VT_VALMASK) == VT_LOCAL
&& op->vt->sym
&& (reg = op->vt->sym->r & VT_VALMASK) < VT_CONST) {
op->priority = 1;
op->reg = reg;
} else {
op->priority = constraint_priority(str);
}
}
/* sort operands according to their priority */
for (i = 0; i < nb_operands; i++)
sorted_op[i] = i;
for (i = 0; i < nb_operands - 1; i++) {
for (j = i + 1; j < nb_operands; j++) {
p1 = operands[sorted_op[i]].priority;
p2 = operands[sorted_op[j]].priority;
if (p2 < p1) {
tmp = sorted_op[i];
sorted_op[i] = sorted_op[j];
sorted_op[j] = tmp;
}
}
}
for (i = 0; i < NB_ASM_REGS; i++) {
if (clobber_regs[i])
regs_allocated[i] = REG_IN_MASK | REG_OUT_MASK;
else
regs_allocated[i] = 0;
}
/* sp cannot be used */
regs_allocated[13] = REG_IN_MASK | REG_OUT_MASK;
/* fp cannot be used yet */
regs_allocated[11] = REG_IN_MASK | REG_OUT_MASK;
/* allocate registers and generate corresponding asm moves */
for (i = 0; i < nb_operands; i++) {
j = sorted_op[i];
op = &operands[j];
str = op->constraint;
/* no need to allocate references */
if (op->ref_index >= 0)
continue;
/* select if register is used for output, input or both */
if (op->input_index >= 0) {
reg_mask = REG_IN_MASK | REG_OUT_MASK;
} else if (j < nb_outputs) {
reg_mask = REG_OUT_MASK;
} else {
reg_mask = REG_IN_MASK;
}
if (op->reg >= 0) {
if (is_reg_allocated(op->reg))
tcc_error
("asm regvar requests register that's taken already");
reg = op->reg;
goto reg_found;
}
try_next:
c = *str++;
switch (c) {
case '=': // Operand is written-to
goto try_next;
case '+': // Operand is both READ and written-to
op->is_rw = 1;
/* FALL THRU */
case '&': // Operand is clobbered before the instruction is done using the input operands
if (j >= nb_outputs)
tcc_error("'%c' modifier can only be applied to outputs",
c);
reg_mask = REG_IN_MASK | REG_OUT_MASK;
goto try_next;
case 'l': // In non-thumb mode, alias for 'r'--otherwise r0-r7 [ARM]
case 'r': // general-purpose register
case 'p': // loadable/storable address
/* any general register */
for (reg = 0; reg <= 8; reg++) {
if (!is_reg_allocated(reg))
goto reg_found;
}
goto try_next;
reg_found:
/* now we can reload in the register */
op->is_llong = 0;
op->reg = reg;
regs_allocated[reg] |= reg_mask;
break;
case 'I': // integer that is valid as an data processing instruction immediate (0...255, rotated by a multiple of two)
case 'J': // integer in the range -4095 to 4095 [ARM]
case 'K': // integer that satisfies constraint I when inverted (one's complement)
case 'L': // integer that satisfies constraint I when inverted (two's complement)
case 'i': // immediate integer operand, including symbolic constants
if (!((op->vt->r & (VT_VALMASK | VT_LVAL)) == VT_CONST))
goto try_next;
break;
case 'M': // integer in the range 0 to 32
if (!
((op->vt->r & (VT_VALMASK | VT_LVAL | VT_SYM)) ==
VT_CONST))
goto try_next;
break;
case 'm': // memory operand
case 'g':
/* nothing special to do because the operand is already in
memory, except if the pointer itself is stored in a
memory variable (VT_LLOCAL case) */
/* XXX: fix constant case */
/* if it is a reference to a memory zone, it must lie
in a register, so we reserve the register in the
input registers and a load will be generated
later */
if (j < nb_outputs || c == 'm') {
if ((op->vt->r & VT_VALMASK) == VT_LLOCAL) {
/* any general register */
for (reg = 0; reg <= 8; reg++) {
if (!(regs_allocated[reg] & REG_IN_MASK))
goto reg_found1;
}
goto try_next;
reg_found1:
/* now we can reload in the register */
regs_allocated[reg] |= REG_IN_MASK;
op->reg = reg;
op->is_memory = 1;
}
}
break;
default:
tcc_error("asm constraint %d ('%s') could not be satisfied",
j, op->constraint);
break;
}
/* if a reference is present for that operand, we assign it too */
if (op->input_index >= 0) {
operands[op->input_index].reg = op->reg;
operands[op->input_index].is_llong = op->is_llong;
}
}
/* compute out_reg. It is used to store outputs registers to memory
locations references by pointers (VT_LLOCAL case) */
*pout_reg = -1;
for (i = 0; i < nb_operands; i++) {
op = &operands[i];
if (op->reg >= 0 &&
(op->vt->r & VT_VALMASK) == VT_LLOCAL && !op->is_memory) {
for (reg = 0; reg <= 8; reg++) {
if (!(regs_allocated[reg] & REG_OUT_MASK))
goto reg_found2;
}
tcc_error("could not find free output register for reloading");
reg_found2:
*pout_reg = reg;
break;
}
}
/* print sorted constraints */
#ifdef ASM_DEBUG
for (i = 0; i < nb_operands; i++) {
j = sorted_op[i];
op = &operands[j];
printf("%%%d [%s]: \"%s\" r=0x%04x reg=%d\n",
j,
op->id ? get_tok_str(op->id, NULL) : "",
op->constraint, op->vt->r, op->reg);
}
if (*pout_reg >= 0)
printf("out_reg=%d\n", *pout_reg);
#endif
}
ST_FUNC void asm_clobber(uint8_t *clobber_regs, const char *str)
{
int reg;
TokenSym *ts;
if (!strcmp(str, "memory") ||
!strcmp(str, "cc") ||
!strcmp(str, "flags"))
return;
ts = tok_alloc(str, strlen(str));
reg = asm_parse_regvar(ts->tok);
if (reg == -1) {
tcc_error("invalid clobber register '%s'", str);
}
clobber_regs[reg] = 1;
}
/* If T refers to a register then return the register number and type.
Otherwise return -1. */
ST_FUNC int asm_parse_regvar (int t)
{
if (t >= TOK_ASM_r0 && t <= TOK_ASM_pc) { /* register name */
switch (t) {
case TOK_ASM_fp:
return TOK_ASM_r11 - TOK_ASM_r0;
case TOK_ASM_ip:
return TOK_ASM_r12 - TOK_ASM_r0;
case TOK_ASM_sp:
return TOK_ASM_r13 - TOK_ASM_r0;
case TOK_ASM_lr:
return TOK_ASM_r14 - TOK_ASM_r0;
case TOK_ASM_pc:
return TOK_ASM_r15 - TOK_ASM_r0;
default:
return t - TOK_ASM_r0;
}
} else
return -1;
}
/*************************************************************/
#endif /* ndef TARGET_DEFS_ONLY */